

The 18th U.S.-Korea Forum on Nanotechnology

Electrocorticography Display for High Precision Intraoperative Brain Mapping

Youngbin Tchoe Biomedical Engineering, UNIST

Sep 23, 2024

US-Korea nanotechnology collaboration in my research

Brain pathology that requires open brain surgery (craniotomy)

Brain tumor

Drug-resistant Epilepsy

Image source: Kateryna Kon / Science Photo Library

Image source: The Neurosurgical Atlas

Awake Craniotomy Conventional ECoG grid

Thousand Channels micro-ECoG grid

→ Low resolution compared to the complexity of the brain → Thick and stiff, hard to achieve Video source: OHSU Dr. Admed Raslan Y. Tchoe *et al.*, Sci. Transl. Med. 14(628), eabj1441 (2022)

 \rightarrow High resolution brain mapping \rightarrow Conformal and compliant to the constantly moving brain curvatures

Reliable Electrode Technology for Human Brain

 \rightarrow Large enough for intraoperative use & Sophisticated enough to resolve individual cortical column

Y. Tchoe et al., Sci. Transl. Med. 14(628), eabj1441 (2022)

10 ms

Motor/Sensory Boundary Mapping

 \rightarrow Mapping the true curvilinear nature of the motor/sensory functional boundary for the first time

Vibrotactile stimulation of each fingertip \rightarrow evoked spatially distinctive HGA patterns

Bringing Light into Resective Neurosurgery

 \rightarrow Fine delineation of functional/pathological regions

 \rightarrow Directly displaying the resection boundary on the 3D brain surface

 \rightarrow High precision neurosurgery

Y. Tchoe et al., Sci. Trans. Med. (2024)

Micro-LED arrays on 6-inch substrate

How single micro-LED pixel was built:

 \rightarrow Scalable, monolithic process was used to fabricate thousands of

micro-LED pixels on 6-inch wafers

1 cm

Integrated LED+ECoG grids

 \rightarrow Flexible µLEDs combined with µECoG grid were designed to display cortical activity

Multicolor LEDs with Quantum Dot Color Converters

Real-time display of ECoG activities on micro-LED arrays

Direct Cortical Stimulation visualization in real time

Surface stimulation (Ojemann)

I, single/multiple trains Depth electrode

Depth stimulation (sEEG)

 \rightarrow The extent of electrical potential field & stimulation-evoked activities could be visualized

LED+ECoG: Motor-Sensory Functional Boundary Visualizations

 → Motor-Sensory functional
boundary could be identified and visualized in sub-mm scale precision

LED+ECoG: Sensory Mapping of the Pig Brain

→ Sensory stimulus-evoked HGA could be precisely be mapped and visualized on the cortical surface

LED+ECoG: Individual Cortical Column Mapping from the Rat Brain

 \rightarrow The sub-mm scale individual cortical column could be visualized

Epileptiform activities visualization in real time

Baseline

dynamer-adampanaanthaanda-pata/patado-bahainado/sarar-anthapataha-atpatahandahanthadhaanthadhaanthadha

Y. Tchoe et al., Sci. Trans. Med. (2024)

Spatial Mapping of Epileptiform Activity Waveforms

- → Minimal thermal effects on the brain tissues were observed
- \rightarrow No electrical leakage path developed during the 3.7 hours operation on the pig brain

• Human brain recording with multi-thousand channel electrode could reveal unprecedented details of the cortical map

 Flexible micro-LED array combined with brain interface electrode visualized cortical activities in real time directly on the brain surface

Acknowledgement

Shadi A. Dayeh, PhD (UCSD)

Ahmed Raslan, MD, PhD (OHSU) Sydney S. Cash, MD, PhD (MGH) Ben U, MD, PhD (UCSD) Angelique C. Paulk, PhD (MGH) Eric Halgren (UCSD) Andrew M. Bourhis (UCSD) Daniel R. Cleary, MD, PhD (OHSU) Karen J. Tonsfeldt, PhD (UCSD) Tianhai Wu (UCSD) Jihwan Lee (UCSD) Keundong Lee (UCSD) Yun Goo Ro (UNIST) Ritwik Vatsyayan (UCSD)

Thank you!

National Institutes of Health